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Anomalous proximity effects at the interface of s- and s±- superconductors
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We study proximity effects close to a boundary between s and s± superconductors. Frustration, caused by
interaction of the s-wave gap parameter with the opposite-sign gaps of s± superconductor, leads to several
anomalous features. In the case of strong frustration a nontrivial time-reversal-symmetry breaking (TRSB) state,
with nonzero phase angles between all gap parameters, is possible. In a more typical state, the s-wave order
parameter is aligned with one of the s± gaps. The other (antialigned) gap induces negative feature in the s-wave
density of states, which can serve as a fingerprint of the s± state. Another consequence of the frustration is an
extended region in the parameter space in which s-wave superconductivity is suppressed, despite being in contact
with nominally stronger superconductor. This negative proximity effect is always present for the TRSB state,
but extends even into the aligned states. We study these effects within a simple microscopic model assuming
a dirty limit in all bands, which allows us to model the system in terms of minimum number of the most
relevant parameters. The described anomalous features provide a route to establishing the possible s± state in the
iron-based superconductors.

DOI: 10.1103/PhysRevB.86.174515 PACS number(s): 74.70.Xa, 74.20.Rp, 74.45.+c

I. INTRODUCTION

The discovery1 of the iron-based high-temperature su-
perconductors has brought new theoretical and experimental
challenges to condensed matter physics. Despite the undoubted
progress in our knowledge (see, for example, Refs. 2–4) some
of the most intriguing questions still do not have a definite
answer. First among them by importance is the precise form
of the superconducting order parameter. The most plausible
candidate so far is the extended s-wave or s± state.5 In this
state the gaps on the (holelike) bands at the center and the
(electronlike) bands at corners of the Brillouin zone (BZ)
have opposite signs. The physical origin of this state is in
the repulsive interband interactions, which likely dominate
the pairing in these materials. Although unconventional, such
a state from symmetry point of view is indistinguishable
from a conventional s-wave state, as they both belong to
the A1g representation of the lattice rotation group. Existence
of such a state is supported by theoretical calculations done
within the framework of several methods: random phase
approximation (RPA),6,7 functional renormalization group
(FRG),8,9 fluctuation exchange (FLEX),10 as well as analytic
one-loop RG and diagrammatic calculations.11–14

In spite of a concentrated effort, the structure of the order
parameter in these superconductors has not yet been unam-
biguously established from experiment. The angle-resolved
photoemission spectroscopy (ARPES) reveals uniform gaps
on different bands15 for several compounds close to optimal
doping, but it cannot resolve the most crucial issue: the
relative sign of the gaps in the electron and hole bands. This
sign can be probed by some phase-sensitive experiments,
similar to ones performed for the cuprate high-temperature
superconductors.16 Even though suggestions for such exper-
iment have been made,17,18 they have not been realized in
practice yet.19

The strongest support in favor of the s± state comes from
inelastic neutron scattering experiments,20 which detect the
emergence of a resonant magnetic mode below the super-
conducting transition, as expected for such a sign-changing

state. This mode was detected in almost all iron-based
superconductors and its frequency scales approximately pro-
portional to transition temperature.3 However, straightforward
interpretation of the data is complicated by the multiband
character of the Fermi surface (FS) and the possible strong
role of interactions.

Another strong argument in favor of the s± state is micro-
scopic coexistence of antiferromagnetism and superconductiv-
ity experimentally demonstrated in some compounds within
a narrow doping range, most clearly in Ba[Fe1−xCox]2As2

(Refs. 21 and 22). Spin-density wave (SDW) has strong
pair-breaking effect on the conventional s++ state in which
the order parameter has the same sign in all bands. Such direct
pair breaking is absent if the order parameter has opposite signs
in the bands connected by the SDW ordering wave vector, as
was confirmed by several theoretical studies.23 Thus, the SDW
is much more compatible with the s± state than with s++ one.

Indirect probe of the bulk order parameter structure is
provided by the low-temperature behavior of the thermo-
dynamic and transport properties which is sensitive to the
presence of quasiparticle states at the Fermi level. Extensive
studies have demonstrated a very rich behavior; all compounds
fall into three relatively well-defined groups. Several clean
materials [LiFeAs (Ref. 24) and Ba1−xKxFe2As2 (Ref. 25)] do
not show low-energy quasiparticles (they exhibit exponential
temperature dependence of the London penetration depth and
no residual linear term in the specific heat), meaning that all
bands are fully gapped. Other materials, with weak impurity
scattering, like LaFePO (Ref. 26), KFe2As2 (Ref. 27), and
BaFe2[As1−xPx]2 (Ref. 28) shows behavior characteristic of
a clean superconductor with line nodes of the gap parameter,
namely, linear temperature dependence of the London pene-
tration depth and square root magnetic field dependence of
the thermal conductivity. Moreover, for BaFe2[As1−xPx]2 the
presence of the node lines in one of the bands has been directly
confirmed by ARPES.29 Note that the existence of accidental
nodes does not necessarily contradict the overall picture of the
s± state; even though the order parameter may change sign
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within one band, what matters most is the sign of its average
value over the FS of this band. The third group of materials is
formed by the compounds with strong scattering by dopants,
such as Ba[Fe1−xCox]2As2, which have rather large residual
specific heat at low temperatures30 and quadratic dependence
of the London penetration depth31 and typically show residual
thermal conductivity.32 These properties are not consistent
with fully gapped s-wave order parameter. While this behavior
can be interpreted as an indication for the accidental nodes
of the gap in combination with strong impurity scattering, it
is also compatible with s± state, where interband impurity
scattering generates large number of subgap states and leads
to finite density of states at the Fermi level.33

The discovery of another iron-based superconducting
family34—the chalcogenide 122’s—cast some doubts on the
s± state as a universal state for all compounds, since in
these materials the hole bands around the � point are absent.
Possible pairing mechanisms and structures of the order
parameter in view of recent experimental developments have
been extensively discussed in recent reviews.4

In this paper we explore an alternative approach for probing
the superconducting order parameter in iron-based materials.
It is based on proximity effect, the mutual influence of two
superconductors, brought in contact. We study the vicinity of
a boundary between ordinary s-wave and s± superconductors
(see Fig. 1). Competing interactions between the s-wave order
parameter and s± gaps with opposite signs lead to frustration.
As a consequence of this frustration, several interesting effects
can appear, including the possibility of new superconducting

FIG. 1. (Color online) (Left) The proximity structure composed
of s-wave and s± superconductors which we consider in this
paper. The superconductors are described by the Green’s functions
� depending on coordinate x and Matsubara frequency ω and
corresponding gap parameters �(x). For s± superconductor these
parameters depend on the band index α = 1,2 (see Sec. III for
details). �s couples to the �α on the s± side. In the case of close
coupling strengths with different bands, this creates the possibility
for a nontrivial relative phases φα (as functions of x and ω) and the
TRSB state. (Right) The three possible states. From top to bottom,
we show the behavior of the anomalous part of the Greens’ functions
in the symmetric and asymmetric TRSB state and the aligned
state.

states. This is in contrast with proximity between conventional
(whether single- or multiband) superconductors, which is a
rather straightforward phenomenon; the phases of the gaps on
both sides always align and their amplitudes get closer (i.e.,
the smaller is enhanced and the larger is suppressed; see, for
example, Ref. 35). In the case of a contact between s and s±
superconductors there is no obvious way to align the phases
and several possibilities compete.

Various effects close to a boundary between s and s±
superconductors have been already considered. Both phe-
nomenological and microscopic methods were used, a number
of interesting and novel results were obtained, and different
effects have been suggested as possible fingerprints of the
s± state. Several papers have concentrated on the problem of a
Josephson junction between s and s± superconductors17,18,36,37

in the context of superconducting quantum interference
device17 and Josephson18,36 interferometry and macroscopic
quantum tunneling37,38 (for a detailed review of the theoretical
and experimental results see Ref. 39). In Refs. 40–43 the
mutual effects of s and s± superconductors in contact were
considered, and the possibility for a new time-reversal
symmetry-breaking (TRSB) state close to the interface was
discussed. The methods used to obtain the TRSB state
were different; however, all of them have some intrinsic
limitations and the obtained solutions cannot be regarded as
fully microscopic and self-consistent.

In this paper we consider in detail anomalous features of a
system composed of a two-band s± superconductor in contact
with a weaker (i.e., with smaller bulk critical temperature)
single-band s-wave superconductor (see Fig. 1). We employ
simple microscopic model, which assumes a dirty limit in
all superconductors but neglects interband scattering in s±
superconductors. This model allows us to describe the system
using a minimum number of the most essential and physically
transparent parameters. Our approach neglects many features
of iron pnictides, such as the presence of more than two gaps,
interband scattering, orbital content of the bands, accidental
nodes, etc., which may be relevant for detailed comparison of
the theory with the experimental data. We believe, however,
that the overall picture we present will survive even in a more
realistic calculation.

As we show below, several nontrivial effects can be
expected is such structures. If the s-wave superconductor is
much stronger coupled to one of the gaps on the s± side
than the other, it is natural to expect that its order parameter
aligns with this gap. The phase of the gap in the other band
is then antialigned with the s-wave gap and thus frustrated.
This frustration leads to the possibility of negative proximity
effect, the magnitudes of all gaps being suppressed close to
the boundary (see the lower right panel on Fig. 1). This effect
is unique to the interface with s± order parameter and has to
be contrasted with the case of s-s++-wave structures, where
the smallest gap is always enhanced (we call this conventional
proximity effect positive). As we demonstrate below, in the
aligned state both positive and negative effects are possible.
We again emphasize that the negative proximity effect cannot
be present for conventional s-wave order parameter (assuming
that the interface does not induce extrinsic pair-breaking).
Thus, observation of such an effect will be a definitive proof
of the presence of s± state in iron pnictides. The reverse is
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not true; positive proximity effect is possible for both s±- and
s++-wave superconductors.

When the properties of the two bands on the s± side
are roughly the same, and the coupling across the boundary
is identical, an even more interesting possibility arises.40,41

Since the frustration in such a system is large, another state
emerges as a compromise. In it the relative phase of the gaps
on the s± side deviates from its bulk π value close to the
boundary. This tilting relieves some of the frustration due to
the interboundary coupling and disappears in the bulk (see
the top right panel in Fig. 1). Such a state is intrinsically
complex and thus breaks the time-reversal symmetry.44 Due to
the finite phase difference between the gaps, it is characterized
by spontaneous supercurrents with opposite direction flowing
between the s-superconductor and s± bands so that in the
ground state the total supercurrent is zero. In a more general
situation of different s± gaps, the TRSB state is possible when
the Josephson coupling energies between the s-wave order
parameter and the opposite-sign bands exactly compensate
each other. Another interesting consequence of our results
is the possible phase transitions between these different
superconducting states. The direct way to induce the TRSB
state is to vary the asymmetry. Unfortunately, there is no
obvious way to do this. More relevant experimentally are the
transitions tuned by the temperature. Within some range of
parameters the aligned state is stable at higher temperature,
but is supplanted by the TRSB state at lower temperatures
through a phase transition.45

We focus on the situation when the direct interband
reflection at the interface is negligible, which is expected,
for example, for the contact made at the [001] surface of
iron-based superconductor. In the opposite situation, when the
interband reflection is strong, a different kind of the TRSB
state has been predicted recently.46

In addition to these general effects we also consider the
behavior of the density of states (DoS) on both sides of the s-s±
interface. This quantity can be directly measured using the
tunneling conductivity. As we show, in the aligned state the
aligned/antialigned gap induces positive/negative correction
in the s-wave DoS. Thus, observation of these features can be
used to probe the multiband order parameter (see also Ref. 47).

It is instructive to compare properties of the s/s± proximity
system considered in this paper with interfaces between s-
and d-wave superconductors, because d-wave represents a
prominent case of sign-changing order parameter realized in
cuprate superconductors. The properties of the such interfaces
have been studied quite extensively (see, e.g., Refs. 48–50),
and several similar anomalous features have been reported. In
particular, for certain orientations the free surface of d-wave
superconductors or s/d interface may generate d + is or
dx2−y2 + idxy states with broken time-reversal symmetry.50,51

In contrast to the situation we consider here, these states are
induced by quasiparticle reflection at the interface between the
different-sign lobes. It was also found that the sign of proximity
effect may be negative for both superconductors,49 but the
conditions for this phenomenon were not studied in detail. The
proximity corrections induced by the d-wave superconductor
into the s-wave DoS have been studied in Refs. 49 and 50.
The most prominent feature is the peak near zero energy due
to the Andreev bound state which splits when the TRSB state

is formed at the interface. Also, a smooth peak is typically
formed at the energy corresponding to the maximum gap of
d-wave superconductor.

Let us outline the structure of the paper. First, in Sec. II we
present a very simple phenomenological model of a frustrated
Josephson junction. In spite of its simplicity, we believe that
this model catches some of the essential physics of the system.
The results we obtain agree with the intuitive picture we
presented above: The TRSB state is stable when the Josephson
couplings with the opposite-sign bands are very close, corre-
sponding to strong frustration. Away from this region, the
aligned states are more favorable. The frustrated Josephson
junction model predicts continuous phase transitions between
the aligned and TRSB states.

The above simple model, however, does not describe
proximity effects and misses other important details as well. To
develop a more realistic description of the superconductivity
on both sides of the interface, we use microscopic theory
in the dirty limit presented in Sec. III, which describes the
system by multiband Usadel equations supplemented with
the appropriate boundary conditions. In Sec. IV we present
analytical results obtained in the limit of weak coupling
between the superconductors, and in Sec. V we describe
the procedure used for numerical solution of the equations.
Even though this approach is strictly applicable only in the
dirty limit, we expect our results to be qualitatively (or even
quantitatively) correct in the clean case as well.

Within the developed framework we study different
superconducting states. We start with the more conventional
aligned state (in Sec. VI) and obtain both positive and negative
proximity effects, depending on the values of different physical
parameters. In Sec. VII we show that the TRSB state indeed
exists and develop its quantitative description. Furthermore,
the proximity effect for such a state is always negative (this
is also clear from general considerations). In Sec. VIII we
summarize our results and discuss the possible limitations of
our approach.

II. SIMPLE MODEL: FRUSTRATED JOSEPHSON
JUNCTION

To gain some insight into the phase diagram of the system
let us first consider a simple phenomenological model, which
nevertheless catches essential physics: Josephson junction
between s and s± superconductors (see also Ref. 43). The
energy of such systems depends on the phase shifts between
the order parameters in the bands of the s± superconductor
and the order parameter in the s-wave superconductor, θ1,2 =
φ1,2 − φs . On general grounds, the simplest form of this energy
in reduced form can be written as

E(θ1,θ2) = cos(θ1 − θ2) − t1 cos θ1 − t2 cos θ2, (1)

with

tα = EJ,α/E12d± � 1,

where EJ,α are Josephson coupling energies between the s-
wave superconductor and two bands of the s± superconductors,
E12 is the interband coupling energy, and d± is the thickness
of the s± superconductor. For definiteness, we assume t1 � t2.
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Minimizing the energy, we get the equilibrium conditions

− sin(θ1 − θ2) + t1 sin θ1 = 0, (2a)

sin(θ1 − θ2) + t2 sin θ2 = 0, (2b)

and, as a consequence,

t1 sin θ1 = −t2 sin θ2. (2c)

Excluding θ2, we obtain an equation for θ1,

sin θ1

(
−
√

1 − t2
1

t2
2

sin2 θ1 − cos θ1
t1

t2
+ t1

)
= 0.

This equation has two solutions, corresponding to the aligned
and TRSB states. For the aligned state, sin θ1 = 0 and we
obtain θ1 = 0, θ2 = π , and

Eal = −1 − t1 + t2. (3)

For the TRSB state we obtain

cos θ1 = t2

2
+ 1

2t2
− t2

2t2
1

, (4a)

cos θ2 = t1

2
+ 1

2t1
− t1

2t2
2

. (4b)

In particular, for the symmetric case t1 = t2, and we have
cos θ1 = cos θ2 = t1/2. The energy for the frustrated state can
be written as

Efr = − 1
2 (t1t2 + t2/t1 + t1/t2) . (5)

The transition to the aligned state occurs when cos θ1 = 1,
giving

t2 = t1

1 + t1
, (6)

and the aligned state is stable for t2 < t1/(1 + t1). Converting
to real units, we conclude that, for weak Josephson coupling,
the frustrated state is realized in the region |EJ,1 − EJ,2| <

E2
J /(E12d±).
These results are summarized on Fig. 2. As we have

anticipated, the TRSB state exists in the region where the
frustration is maximum (t1 ≈ t2), and is replaced by the aligned

FIG. 2. (Color online) (Left) The phase diagram of a frustrated
Josephson junction. The TRSB state exists near the diagonal part
where t1 ≈ t2. Away from this diagonal region the aligned state is
realized. (Right) Evolution of the phase angles θ1,2 along the vertical
line marked in the phase diagram.

state when one of the couplings dominates. The transition
between the two states is continuous. Even though this simple
model cannot pretend to give quantitative description of the
interface, we expect that its general features survive in a more
microscopic setup, which we now proceed to describe.

III. USADEL EQUATIONS AND BOUNDARY CONDITIONS

We now move to a microscopic description of the problem.
Let us consider a “sandwich,” consisting of a slab of a two-band
s± superconductor with thickness d±, in contact with a slab
of a single-band s-wave superconductor with thickness ds ,
as shown in Fig. 1. We choose the x = 0 plane to be the
boundary between the two layers. The main assumption of
our description is that both superconductors are in the dirty
limit, but the interband scattering in the s± superconductor is
negligible. In this case superconductivity can be described by a
simplified version of the Gor’kov equations, known as Usadel
equations.52 The following formalism has been developed in
Ref. 53 and applied to the case of conventional two-band
superconductors in Ref. 35.

For the s-wave superconductor (−ds < x < 0), the equa-
tions for the impurity averaged Greens’ functions Gs and
�s (where �s = ωFs/Gs and Fs is the anomalous part
of the single-particle Green’s function), with the necessary
self-consistency equation, are

Ds

2ωGs

[
G2

s�
′
s

]′ − �s = −�s, (7a)

2πT
∑
ω>0

λs

Gs�s

ω
= �s, Gs = ω√

ω2 + |�s |2
, (7b)

where the prime denotes spatial derivative, and ω = 2πT (n +
1/2) stands for the Matsubara frequencies.

For the s± superconductor, 0 < x < d±, and the band index
α = 1,2, we have

Dα

2ωGα

[
G2

α�′
α

]′ − �α = −�α, (8a)

2πT
∑

β, ω>0

λαβ

Gβ�β

ω
= �α, Gα = ω√

ω2 + |�α|2
(8b)

(we again emphasize the fact that interband impurity scattering
has been neglected; for details see Ref. 35 and Sec. VIII). We
denote the bulk critical temperatures of the s± and s-wave
superconductors as Tc and T s

c , respectively. Since we consider
s± superconductor, we assume �1�2 < 0 which is realized
if λ12,λ21 < 0. The diffusion coefficients D{s,α} are related
to the conductivities σ{s,α} as σ{s,α} = e2ν{s,α}D{s,α}, where
ν{s,α} are the normal DoSs. The ratio of the off-diagonal
coupling constants is given by the ratio of partial normal DoSs,
λαβ/λβα = νβ/να . It is convenient to normalize all energy
scales (ω and gaps on both sides) to πTc. We also introduce
coherence lengths ξα = √

Dα/2πTc and ξ ∗
s = √

Ds/2πTc

(note that ξ ∗
s is related to the true bulk coherence length of

the s-wave superconductor by ξs = ξ ∗
s

√
Tc/T s

c ).
Since we consider an interface, these equations have to be

supplemented with appropriate boundary conditions. These
connect the Green’s functions and their derivatives at the x = 0
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plane and can be written as54

ξ ∗
s G2

s�
′
s =

∑
α

ξα

γα

G2
α�′

α, (9a)

ξαGα�′
α = − 1

γBα

Gs(�s − �α), (9b)

for α = 1,2 with

γα = ραξα

ρsξ ∗
s

, γBα = RBα

ξαρα

, (10)

where ρs and ρα are the bulk resistivities of the s-wave
superconductor and the α band and RBα is the boundary
resistivity for band α. We can combine Eqs. (9a) and (9b)
and get the useful equivalent form of the boundary condition
(9a),

ξ ∗
s Gs�

′
s =

∑
α

1

γ̃Bα

Gα(�α − �s), (11)

where we introduced the new interface parameters γ̃Bα =
γBαγα , which we use together with γBα . We also have to specify
the conditions on the external boundaries:

�′
s(−ds) = 0, �′

α(d±) = 0. (12)

Four parameters enter the boundary conditions and control
the strength and the sign of the proximity effect; γ1 and γ2

depend on the bulk properties of the materials, whereas γB1

and γB2 describe the boundary itself.55 The first two parameters
determine the relative strength of the proximity effect between
the s-wave superconductor and the s± bands. In particular,
large γα implies that the s-wave material is more metallic
than the α band on the s± side, and thus strongly influences
it through proximity, while remaining weakly affected by this
band itself. For the ratio of these parameters we derive the
following relation

γ1

γ2
= ν2ξ2

ν1ξ1
= λ12ξ2

λ21ξ1
. (13)

The parameter γBα is inversely proportional to the transparency
of the boundary for the α band. Estimating these parameters
is not easy, but for the case of iron-based materials (which are
semimetals) in contact with typical conventional superconduc-
tor, we generally expect γα to be large.

To find the density of states, we have to perform analytical
continuation of the Green’s functions to real energies iω →
E + iδ. The normalized DoS is related to the real-energy
Green’s function by the standard expression

N{s,α}(E,x) = Re[G{s,α}(E,x)]

= Re

[
E√

E2−�{s,α}(E,x)�∗
{s,α}(−E,x)

]
. (14)

In the following section we present analytical results for the
Green’s functions and gap parameters obtained in the limit
of weak coupling between superconductors (large γBα) in the
case of aligned state.

Establishing the model parameters which would
describe real materials requires experimental determination of
electronic and scattering properties of the individual bands.

While this is a challenging task, in principle, this can be done
using ARPES,15,29 quantum oscillations,56 or multiple-band
fits of the magnetotransport57 and optical measurements.58

IV. ANALYTICAL RESULTS FOR WEAK COUPLING

In the case of the weak coupling between s and s±
superconductors, γBα �1, the contact-induced corrections to
the gaps and Green’s function can be treated as small perturba-
tions, �{s,α}(x) = �{s,α}0 + �̃{s,α}(x), �{s,α}(x) = �{s,α}0 +
�̃{s,α}(x). The small corrections �̃{s,α}(ω,x) and �̃{s,α}(x)
can be computed analytically in the linear order with
respect to 1/γBα . Similar calculation for several types of
junctions using somewhat different approach has been done
in Ref. 59. We consider here only the case of aligned
gaps. The computation details are presented in Appendix A
and general results can be presented in the form of
Fourier expansions. For the s-wave superconductor �̃s(ω,x) =∑∞

m=0 �̃s,m(ω) cos kmx and �̃s(x) = ∑∞
m=0 �̃s,m cos kmx with

km = mπ/ds and the Fourier components are

�̃s,m(ω) = �̃s,m

1 + ξ 2
s,ωk2

m

− (2 − δm)ξ 2
s,ω

/
(dsξ

∗
s )

1 + ξ 2
s,ωk2

m

×
∑

α

√
ω2 + �2

s0√
ω2 + �2

α0

�s0 − �α0

γ̃Bα

, (15a)

�̃s,m =−2πT

Zs,m

∑
α,ω>0

ω2(
ω2+�2

s0

)√
ω2+�2

α0

× (2 − δm) ξ 2
s,ω

/
(dsξ

∗
s )

1 + ξ 2
s,ωk2

m

�s0 − �α0

γ̃Bα

,

Zs,m = 2πT
∑
ω>0

1(
ω2 + �2

s0

)3/2

(
�2

s0+ω2 ξ 2
s,ωk2

m

1 + ξ 2
s,ωk2

m

)
,

(15b)

where ξ 2
s,ω = Ds/(2

√
ω2 + �2

s0).
For the s± superconductor the corresponding expansions are

�̃α = ∑∞
m=0 �̃α,m cos qmx, �̃α = ∑∞

m=0 �̃α,m cos qmx with
qm = mπ/d±. The Fourier components �̃α,m and �̃α,m

are given by somewhat cumbersome but closed analytical
formulas,

�̃α,m = �̃α,m

1 + ξ 2
α,ωq2

m

+ (2 − δm) ξ 2
α,ω

/
(d±ξα)

1 + ξ 2
α,ωq2

m

×
√

ω2 + �2
α0√

ω2 + �2
s0

�s0 − �α0

γBα

, (16a)

�̃α,m = 2πT
∑

β,ω>0

Um,αβ

ω2(
ω2 + �2

β0

)√
ω2 + �2

s0

× (2 − δm)ξ 2
β,ω

/
(d±ξβ)

1 + ξ 2
β,ωq2

m

�s0 − �β0

γBβ

, (16b)
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and ξ 2
α,ω ≡ Dα/(2

√
ω2 + �2

α0). Here the matrix Um,αβ is
defined by the relations

Ûm = 1

DU

[
w22−�m,2 −w12

−w21 w11−�m,1

]
,

DU = −�m,2w11−�m,1w22 + �m,1�m,2,

with

�m,α =2πT
∑
ω>0

[
ω2(

ω2+�2
α0

)3/2

1

1 + ξ 2
α,ωq2

m

− 1

ω

]
+ ln

1

t

and ŵ = λ̂−1 − λ−1Î being the degenerate matrix whose
components are given by relations

w11 =
√

λ2−/4 + λ12λ21 − λ−/2

det λ
, w12 = − λ12

det λ
,

w22 =
√

λ2−/4 + λ12λ21 + λ−/2

det λ
,

where λ− ≡ λ11 − λ22 and det λ ≡ λ11λ22 − λ12λ21.
The quantity �̃s,0 represents the average correction to the

s-wave gap parameter induced by the contact. In particular,
the sign of �̃s,0 determines wether s-wave superconductivity is
enhanced or suppressed (positive vs negative proximity effect).
At low temperatures it is possible to obtain an analytical result
for the average gap correction (see Appendix A),

�̃s,0

πTc

= ξ ∗
s

ds

∑
α

U

(
�s0

|�α0|
)

�α0 − �s0

γ̃Bα|�α0| ,

(17)

with U (a) = K(1−a2) − E(1−a2)

1 − a2
,

where K(m) = ∫ π/2
0 (1 − m sin2 θ )−1/2dθ and E(m) =∫ π/2

0 (1 − m sin2 θ )1/2dθ are the complete elliptic integrals.
This general result further simplifies for the important
particular case �s0 � |�α0|. In this limit the elliptic integrals
can be expressed in terms of elemental functions leading to

�̃s,0

πTc

≈ ξ ∗
s

ds

∑
α

�α0 − �s0

γ̃Bα|�α0|
[

ln

(
4|�α0|
�s0

)
− 1

]
. (18)

From this result we can see that the partial contribution from
the band is mostly determined by the strength of coupling
to this band ∝1/γ̃Bα . In addition, we observe that while the
positive contribution from the aligned band is proportional to
the gap difference �10 − �s0, the negative contribution from
the antialigned band is proportional to the sum of the absolute
gap values |�20| + �s0. As a consequence, even in the aligned
state the negative contribution may exceed the positive one
leading to the total negative proximity effect. This negative-
proximity region is especially broad in the case when the gap
values �α0 and �s0 are close. Figure 3 illustrates regions
of positive and negative proximity in the coupling-constants
plane, 1/γ̃B1-1/γ̃B2, obtained using Eq. (17). The cases of
identical and different s± gaps are illustrated. We can see
that in both cases the region of negative proximity occupies a
significant region in the parameter space.

To find corrections to the densities of states, δNs(E)
and δNα(E), we have to perform the analytical continuation

FIG. 3. The regions of positive and negative proximity in the
weak-coupling regime evaluated using Eq. (17). The left and right
diagrams illustrate, respectively, the cases of identical and different
s± gaps.

iω → E + iδ in Eqs. (15a) and (16a) and perform expansion
in Eq. (14), which gives

δN{s,α}0(E,x) = Re

[
E�∗

{s,α}0�̃{s,α}(E,x)

(E2 − |�{s,α}0|2)3/2

]
. (19)

Simple analytical result illustrating general trends can be
obtained at low temperatures in the case of thin s layer, ds < ξs ,
and weak s-wave superconductor, |�α| � |�s |.47 In this
case, the real-energy Green’s function can be approximately
evaluated as

�̃s(E,x)≈�̃s,0 − πTc

ξ ∗
s

ds

∑
α

1√
�2

α0−E2

�s0−�α0

γ̃Bα

. (20)

Neglecting the first trivial term, we obtain the correction to the
s-wave DoS

δNs(E,x) ≈ πTc

ξ ∗
s

ds

E�s0(
E2 − �2

s0

)3/2

×
∑

α

�α0 − �s0

γ̃Bα

√
�2

α0 − E2
� (|�α0| − E) , (21)

where �(x) is the step function. We see that the aligned
bands (positive �α) induce positive corrections to the s-wave
DoS and the antialigned bands (negative �α) induce negative
corrections. These negative features can serve as definite
fingerprint of the s± state.47 Note that the perturbative result
(21) does not describes energy regions in the vicinity of the
gap values, E ∼ |�α0|.

To go beyond the weak-coupling regime we have to rely on
numerical calculations. In the following section we describe
numerical procedures and present results of these calculations
for different cases.

V. NUMERICAL PROCEDURE

For numerical modeling, it is convenient to use the so-
called θ parametrization, in which we write Gs = cos θs , Gα =
cos θα . For �α and �s two choices will prove convenient. Let
us first consider the (technically simpler) case of a significant
difference between the coupling of one of the two gaps on
the s± side to the gap on the s-wave side (weakly frustrated
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interface). As already mentioned in the Introduction, in such
situation we expect the so-called aligned state to be stable.
In it the phase of �s is aligned with one of �α , while the
phase difference between �1 and �2 is π ; this state obviously
belongs to the general class of s± states. Proximity effect on
the s-wave side enters through the (asymmetric) suppression
of �1 and �2 close to the boundary (schematically shown on
the bottom right panel of Fig. 1).

In this state �α and �s can be chosen real, �{s,α} =
ω tan θ{s,α} (with the condition �1�2 < 0). In the following,
we assume that the coherence lengths of the s± bands are
equal ξ1 = ξ2. We use dimensionless units: All energies are
normalized to πTc and the lengths on right/left are normalized
to ξ ∗

s /ξα . Separating the highest derivatives θ ′′
{s,α}, we can

rewrite the Usadel equations as

θ ′′
{s,α} + �{s,α} cos θ{s,α} − ω sin θ{s,α} = 0. (22)

This equation determines θ{s,α} as function of the discrete
Matsubara frequency ω = t(2n + 1) with t = T/Tc.

For simplicity, we neglect the intraband pairing interac-
tions and consider only the repulsive interband coupling,
parametrized by λ12 and λ21. This is a reasonable approxi-
mation for the case of iron pnictides, in which the interband
pair scattering is believed to be driving the superconductivity.
Proper generalization, including the (attractive or repulsive)
intraband terms, is straightforward. The self-consistency equa-
tion for �α (8b) becomes

�α = −2tλαβ

Nmax∑
n=0

sin θβ, (23)

with α,β = 1,2 or 2,1, the sum is over Matsubara frequen-
cies, and Nmax = ωmax/(2πT ) − 1/2, where ωmax is some
frequency cutoff.

The boundary conditions at the outside boundaries, x =
−ds,d±, are θ ′

s(−ds) = 0 and θ ′
α(d±) = 0. For the boundary

conditions at the s-s± interface we obtain in the case of the
aligned state (see Appendix B)

θ ′
s =

∑
α

θ ′
α

γα

, (24a)

θ ′
α = 1

γBα

sin(θα − θs). (24b)

Let us now consider the case of strongly frustrated boundary
when the TRSB state appears. The Green’s functions are
now essentially complex quantities: �s = ω tan θse

iϕs and
�α = iω tan θαeiϕα (the factor i in the definition of �α is
for convenience). For the s± state we have ϕ1 − ϕ2 = π .
Correspondingly, the s-wave gap and the two gaps of the order
parameter can be written as �se

iχs and i�αeiχα , where the
(real) parameters �{s,α} and χ{s,α} have to be determined from
the self-consistency equations.

The transformed Usadel equations for the highest deriva-
tives θ ′′

{s,α} and ϕ′′
{s,α} in this case become

ϕ′′+ 2 cot θϕ′θ ′− �

sin θ
sin(ϕ−χ ) = 0, (25a)

θ ′′−sin θ cos θ (ϕ′)2−ω sin θ+� cos θ cos(ϕ−χ ) = 0, (25b)

where, for brevity, we omitted the subscripts {s,α}. We use
the same normalization for all energies and lengths as in
Eq. (22).

The self-consistency equation for �α is

�αeiχα = −2tλαβ

Nmax∑
n=0

sin θβeiϕβ . (26)

This complex equation can be split into two real equations for
�α and χα:

�α = 2tλαβ

⎡
⎣(∑

n

sin θβ cos ϕβ

)2

+
(∑

n

sin θβ sin ϕβ

)2
⎤
⎦

1/2

,

χα = − arctan

(∑
n

sin θβ sin ϕβ

/∑
n

sin θβ cos ϕβ

)
.

The negative sign in the second equation—a straightforward
consequence of the fact that λαβ is repulsive—leads to
somewhat counterintuitive result. The proximity effect tends
to align the phases of �s and �α . �α , in turn, determines
the order parameter �β through the self-consistency equation,
which tends to make the phases difference between �α and
�β close to π (to compensate for the “wrong” sign of the
interaction). This means that, due to the proximity effect,
the phase difference between �α and �s increases (measured
from the positive axis), rather than decreases (see Fig. 1 for
a pictorial presentation of this argument). This is a somewhat
oversimplified picture, since ϕα depends on the Matsubara
frequency. As can be seen from the Eqs. (8a) and (8b), for
high frequencies the derivative term becomes unimportant
and �α → �α meaning that ϕα → χα . This implies that ϕα

changes its sign as a function of ω. To obtain �β we have to
sum over all n and this leads to “smearing” of the contributions
to χβ over a phase interval. Nonetheless, as we will see, the
intuitive argument above seems to be qualitatively correct.

The boundary conditions at the outside boundaries are given
by

θ ′
s(−ds) = 0, ϕ′

s(−ds) = 0, θ ′
α(d±) = 0, ϕ′

α(d±) = 0.

The boundary conditions at the s-s± interface in θ parametriza-
tion are more complicated and we derive them in Appendix B.
In reduced units these conditions are

θ ′
α = − 1

γBα

[cos θα sin θs sin (ϕs −ϕα)−cos θs sin θα] ,

(27a)

ϕ′
α sin θα = 1

γBα

sin θs cos (ϕs − ϕα) , (27b)

θ ′
s = −

∑
α

1

γ̃Bα

[cos θαsin θs +cos θssin θαsin(ϕα−ϕs)],

(27c)

ϕ′
s sin θs =

∑
α

1

γ̃Bα

sin θα cos (ϕα − ϕs) . (27d)

To summarize, we have developed an entirely self-
consistent scheme, based on Usadel equations and supple-
mented by the appropriate self-consistency equations and
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boundary conditions. Unfortunately, due to its considerable
complexity, in the general case it has to be solved numerically.
To do this, we start with a guess for θs , θα , and ϕα , solve it
on the s± side, using two of the boundary conditions at x = 0
and the boundary conditions at x = d±, then write the third
condition at x = 0 with the new solutions for θα , ϕα and use it
to solve for θs . With such obtained solution we rewrite the two
initially used boundary conditions and again solve for θα and
ϕα . We repeat the process until self-consistency is achieved.
To simplify the calculations, in some cases we expanded the
equations around the bulk value θα = arctan(�α,0/ω), ϕα = 0,
where �α,0 is the bulk gap for the α band.

Once calculations have produced self-consistent solutions
of the equations on both sides of the boundary, we can obtain
the DoS, N{s,α}(E,x). For this, we rewrite the equations and
boundary conditions with analytically continued frequency
iω → E + iδ and with computed gap functions �s(x), �α(x)
and solve them again for the real-energy Green’s functions
θ{s,α}(E,x). Once these equations are solved, the DoSs is given
by Eq. (14) or, in the θ parametrization, by

N{s,α}(E,x)=Re[cos θ{s,α}(E,x)].

In the following sections we review properties of the proximity
system for different cases.

VI. ALIGNED STATE

With the formalism described in the Secs. III–V, we are
now ready to study the proximity effects in several particular
cases.

A. Identical s± bands

The aligned states appear when the bulk and boundary
condition parameters are not symmetric with respect to the
band indices interchange (asymmetric s± state). For simplicity,
we first consider the asymmetry only in the coupling strength
γB1 =γB2, while keeping the rest of the parameters symmetric.
In particular, this means that close to the boundary |�1| =
|�2|, but in the bulk the symmetric s± state is restored
and �2 = −�1 (see right middle panel of Fig. 1). In all
numerical calculations presented in this section, unless stated
otherwise, we fixed several parameters: d± = 8ξα , T s

c =
0.222Tc, T = 0.1Tc. The choice of T s

c gives relation for the
gap �bulk

s /(πTc) = 0.1213. Other parameters which enter the
calculations are specified in the figure captions.

Since in a way the aligned state is closer to a conventional
multiband superconductor than the TRSB state is, we expect
the usual positive proximity effect to be predominant. Indeed,
as we will see, the s-wave superconductor’s gap tends to be
enhanced by the presence of the stronger s± superconductor
(which in turn is suppressed). This is easy to understand when
the s-wave gap is much stronger coupled to one of the gaps on
the s± side, since this case can be thought as proximity between
two single-band superconductors. Coupling to the other gap
on the s± side can be treated as a small perturbation. However,
when the interboundary couplings are close, and the system
is strongly frustrated (and thus close to the TRSB state), the
proximity effect turns negative, with all superconducting gaps
suppressed close to the x = 0 plane. Therefore, the “sign”

FIG. 4. (Color online) These plots illustrate behavior of the gaps
in the proximity sandwich for two values of the ratio γB1/γB2. The
insets show magnifications of �s(x) and, for comparison, �bulk

s is also
shown. Other used parameters are γB1 = 10, ds = ξ ∗

s , and γα = 10.
One can see that for weakly asymmetric coupling γB1/γB2 = 0.75
in plot (a) the proximity effect is negative [�s(x) < �bulk

s ], while
for strongly asymmetric coupling γB1/γB2 = 0.25 in the plot (b) the
proximity effect becomes positive [�s(x) > �bulk

s ].

of the proximity effect on the s-wave side in the aligned
state is not universal and depends on both bulk and boundary
properties of the materials.

On Fig. 4 we illustrate this effect by showing calculations
of �s(x) for two different values of γB1/γB2 (we change γB2

while keeping all other parameters of the system fixed). As
can be seen, �s is enhanced or suppressed close the interface
[corresponding to a sign change of θ ′

s(0)], depending on the
ratio of the boundary transparencies. Note that the transition
between the two cases coincides with change of the ratio of
�1(0)/|�2(0)|. For positive (negative) proximity effect this
ratio is larger (smaller) than 1. This is easy to understand from
the first condition in Eq. (24a); it is clear that (for γ1 = γ2) the
sign of θ ′

s is determined by the θ ′
1 + θ ′

2. Also remember that �1

is determined by θ2 and vice versa in the interband coupling
model.

Now we proceed to systematically study the interplay
between the different physical parameters and the transition
from negative to positive proximity effects. We plot in
Fig. 5(a) the value of �s(−ds) and �s(0) as a function of
the ratio γB1/γB2 (the model, of course, is symmetric with
respect to the exchange γB1 ↔γB2). �s is suppressed as
this ratio gets closer to one (and the frustration increases),
in agreement with our previous qualitative arguments and
analytical calculations. With increasing the ratio the proximity
effect turns from positive to negative when the ratio γB1/γB2

exceeds the critical value ≈0.578. The linear approximation
for the average correction to the s-wave gap (17) in the case
|�20| = �10 gives the following estimate for this critical value,
γB1/γB2 ≈ (�10 − �s0)/(�10 + �s0). For our parameters this
gives γB1/γB2 ≈ 0.645 which somewhat exceeds the value
obtained in numerical calculations. As the system gets closer
to the line of maximal frustration γB1 =γB2 it eventually
undergoes a phase transition to the TRSB state.

In Figs. 5(b) and 5(c) we illustrate the dependence of the
gap parameters on the coupling strength 1/γB1 for fixed ratio
γB2/γB1 = 2. At small coupling strength, 1/γB1 � 0.07 the
behavior of all gaps agrees with the linear approximation
described in Sec. IV. At larger coupling the s-wave gap
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FIG. 5. (Color online) (a) Plot of �s(−ds) and �s(0) as a function
of the ratio γB1/γB2. As γB1/γB2 approaches 1, the enhancement
on the s-wave side is replaced with suppression (the proximity
effect changes from positive to negative). The arrow indicates
the expected location of the transition to the negative proximity
from the weak-coupling approximation, γB1/γB2 ≈ 0.645. (b),(c)
The dependencies of the s-wave gap parameter at the boundaries
[plot (b)] and the s± gaps at the interface [plot (c)] on the coupling
strength with the first band, 1/γB1 for fixed ratio γB2/γB1 = 2. The
inset in the plot (b) blows up the small-coupling region. Behavior
of the gaps expected from the linear approximation is also shown
[the dotted line in the plot (b) and the dashed and dotted lines in the
plot (c)]. (d) The regions of the negative and positive proximity in the
1/γB1-1/γB2 plane obtained by numerical calculations. The dashed
lines show boundaries obtained within weak-coupling approximation.
Parameters used in the calculation for all plots are γB1 = 10, γα = 10,
ds = ξ ∗

s .

strongly deviates from the linear approximation. In particular,
it reaches maximum at some value of coupling and decreases
at larger values. With further increase of coupling, �s drops
below the bulk value; that is, proximity becomes negative.
Qualitatively, this behavior can be understood as follows:
The positive and negative contributions to �s are roughly
proportional to �1(0)−�s and |�2(0)|+�s correspondingly.
As the s± gap parameters reduce and become closer to
the s-wave gap with increasing coupling, the negative term
becomes relatively stronger. Another notable property is that
the absolute values of the s± gap parameters �1 and |�2|
remain very close, in spite of significant asymmetry in coupling
strength.

In Fig. 5(d) we show the regions of the negative and
positive proximity in the coupling-strengths plane obtained
by numerical calculations and compare them with predictions
of the weak-coupling approximation. In agreement with the
plots 5(a)–5(c), we can see that stronger coupling favors
negative proximity meaning that the weak-coupling approach
underestimates the width of the negative-proximity region for
small γBα .

Unfortunately, there is no obvious way to control the
coupling parameters γBα . One parameter which can be varied
relatively easily in experiment is the thickness of the layers.

FIG. 6. (Color online) Plot of �s(−ds) and �s(0) as a function
of ds for γB1 = 10 and two values of γB2, 12 and 20, corresponding
to negative and positive proximity effect. As the thickness increases
�s(−ds) approaches its bulk value.

In Fig. 6 we show the �s as a function of ds for γB1 = 10
and two values of γB2, 12 and 20, corresponding to negative
and positive proximity effect. There are two natural tendencies
which can be observed. First, with increase of ds the value of
�s increases (decreases) for the positive (negative) proximity.
Second, the difference between �s(0) and �s(−ds) increases
with thickness until it finally saturates for ds � ξs .

In this section we demonstrated that both negative and
positive proximity effects may present close to s-s± interfaces
for the aligned state. The sign of the proximity effect is
determined by nontrivial interplay of the physical parameters
in the system. In general, negative proximity effect is expected
in the region around the line which separates the aligned and
the TRSB states, for intermediate frustration of the interface.

B. Nonequal s± gaps

In this section we present numerical results illustrating
properties of aligned state when the bulk gaps of s± supercon-
ductor have different magnitudes. This situation is probably
more typical and has one definite practical advantage with
respect to the case of identical or close s± gaps: Different gaps
induce features into the s-wave DoS which are well separated
in energy and thus easier to detect experimentally. Therefore,
in this section, in addition to the behavior of the gaps, we also
study behavior of DoSs. We investigate in detail the shapes of
DoS features and their sensitivity to the coupling parameters.

We first consider the case of weak coupling (large γBα and
γ̃Bα) and compare numerical calculations with the analytical
results presented of Sec. IV. In particular, this allows us to
evaluate limits of the weak-coupling approximation. Figure 7
illustrates behavior of the gaps for different coupling strengths.
For an s± superconductor we consider again the interband
coupling model and the gap values are fixed by the coupling
constants which we take as λ12 = −0.4 and λ21 = −0.2 giving
the bulk gaps |�10| = 0.683 and |�20| = 0.456 (in units of
πTc). We assume tcs = T s

c /Tc = 0.3 giving �s0 = 0.1675.
We again assume identical coherence lengths for two s±
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FIG. 7. (Color online) (a) The coordinate dependences of the s-
wave order parameter �s for different couplings to the s± bands. The
plots are labeled by γ̃B1,γ̃B2. Other parameters are listed in plot (c).
The horizontal dashed line shows the bulk gap. The curves above
this line (positive proximity) correspond to the alignment with the
large gap, �1, while the curves below this line (negative proximity)
correspond to the alignment with the small gap, �2. Three dot-dashed
lines above and three dashed lines below show analytical predictions
based on linear approximation [Eq. (15b)]. (b) The dependences of
the s-wave gap at the outside boundary on the coupling strength with
the aligned gap 1/γ̃Bα; dashed lines show linear approximations.
(c) The coordinate dependences of the s±-wave order parameters for
the alignment with the larger gap. The solid lines show the linear
approximation.

bands. Due to relation (13), we have γ1/γ2 = λ12/λ21 = 2
and therefore we select γ1 = 4, γ2 = 2. All parameters used
in these calculations are listed in Fig. 7(c). We consider both
cases of alignment of the s-wave gap �s with large gap �1

(�s ��1) and with small gap �2 (�s ��2). We only vary
coupling strengths ∝1/γ̃Bα preserving the ratio γ̃B2/γ̃B1 = 2
for �s ��1 and γ̃B1/γ̃B2 = 2 for �s ��2.

Figure 7(a) shows the coordinate dependences of the s-wave
order parameter. The symbols show numerical results and the
lines show analytical results in the linear order with respect to
1/γ̃Bα based on Eq. (15b). The bulk gap is shown by the dashed
line. For selected parameters, the alignment with the large gap
corresponds to positive proximity, while the alignment with
the small gap corresponds to negative proximity. We can see
that the linear approximation accurately describes behavior
of �s only for weakest coupling γ̃B(1,2) = 100. It always
overestimates the gap parameters and breaks down already
for rather weak coupling strength. This is even clearer on Fig.
7(b), where the gap parameter at the outside surface is plotted
versus the coupling strength with the aligned gap. Deviations
are especially large in the case of alignment with the large gap.
The found nonmonotonic dependence of �s is similar to the
case of identical s± gaps shown in Fig. 5(b).

Figure 7(c) shows the coordinate dependences of the
s± gaps in the case �s ��1. As expected, both gaps are
suppressed at the interface. This suppression grows with
increasing coupling strength, and disappears away from the
boundary for a distance of the order of the coherence length.

FIG. 8. (Color online) Behavior of the densities of states for the
same parameters as in Fig. 7. Plots (a) and (b) illustrate shapes
of s-wave DoS for the cases when the s-wave order parameter is
aligned with large and small gap correspondingly for the strongest
used coupling strength. The dashed lines show the BCS density of
states. Plots (c) and (d) show the partial DoS for two s± bands at the
interface and at the outside boundary for these two cases. Plots (e) and
(f) demonstrate the evolution of the feature in the s-wave DoS with
varying strength of coupling. The plots are displaced vertically for
clarity. The dashed lines show predictions of the linear approximation.

Behavior for the case �s ��2 is very similar. It is peculiar
that, in contrast to the s-wave gap, the linear approximation
accurately describes the behavior of the s± gap parameters in
the whole studied range of parameters.

Figure 8 illustrates behavior of the DoS for the same set
of parameters. Figures 8(a) and 8(b) demonstrate full shapes
of the s-wave DoS at x = −ds , Ns(E), for the cases �s ��1

and �s ��2 correspondingly and for strongest coupling in
this series. Interaction with the s± superconductor induces
specific features in the s-wave DoS near the energies of s±
gaps. Figures 8(e) and 8(f) show evolution of these s-wave DoS
features with increasing coupling strength. The weak-coupling
approximation for the case of thin s-superconductor layer
[Eq. (21)] suggests that the aligned and antialigned gaps
should induce a small peak and a dip, correspondingly.47

For comparison, the analytical weak-coupling results are also
shown in Figures 8(e) and 8(f) by dashed lines. We can see
that the analytical approximation describes well the shapes of
correction except the regions close to the s± gaps where it
overestimates the amplitudes of peaks and dips. Nevertheless,
small asymmetric peaks and dips do appear for weak coupling
strength, in agreement with analytical predictions. These peaks
and dips are rapidly smeared with increasing coupling strength.
Equation (21) also suggests that the correction is strongly
asymmetric: The s-wave DoS is only enhanced or reduced for
E < |�α|. This steplike behavior of the correction is indeed
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seen in Figs. 8(a) and 8(b) and, in more detail, in Figs. 8(e) and
8(f). In fact, with increasing coupling the peaks and dips evolve
into smooth up and down steps. The amplitude of this steplike
feature between |�2| and |�1| monotonically increases with
increasing coupling and its shape is well described by the
analytical approximation.

Figures 8(c) and 8(d) show partial DoSs for two s± bands
at the interface and at the outside boundary. Coupling with an
s-wave superconductor leads to considerable smearing of the
DoS peaks at the interface. The most prominent feature is the
appearance of the tails spreading down to the s-wave spectral
gap. This is a well-known feature which is always induced in
a superconductor by proximity with either metal or weaker
superconductor.60 Note also that the peaks positions for DoS
at the interface do not shift much with respect the bulk gap
values. There is no qualitative difference in the DoS shapes
between the aligned and antialigned bands.

We also studied the evolution of the proximity properties
with varying the partial resistances for two s± bands, while
keeping fixed the total boundary resistance. As the total bound-
ary conductance �B = 1/RB is equal to sum of the partial
boundary conductances 1/RBα ∝ 1/γ̃Bα , the total boundary
resistance can be set by fixing 1/γ̃B = 1/γ̃B1 + 1/γ̃B2. We
select this parameter as 1/γ̃B = 0.15 corresponding to the
moderately strong coupling strength. All other parameters
are the same as in Fig. 7. Figure 9 illustrates evolution
of the s-wave order parameter and DoS for varying partial
resistances for two bands. The plots are marked by the pair
γ̃B1,γ̃B2. We can see that for strongly asymmetric coupling
proximity effect is positive, there is pronounced BCS peak
near the bulk gap, and pronounced steplike features at the
s± gaps. The step amplitude is typically larger for a smaller
gap. As coupling becomes more symmetric, the proximity

FIG. 9. (Color online) Evolution of the s-wave for the order
parameter (left lower plot) and DoS (left plot) for the fixed total
boundary resistance set by condition 1/γ̃B1 + 1/γ̃B2 = 0.15 and for
varying partial resistances for two bands. Coupling to the larger gap
in the right plot progressively increases from the back to the front
plot. Plots are marked by γ̃B1, γ̃B2. Other parameters are the same as
in the previous plots. The upper left plot shows the order parameter
at the outside boundary and the gap in spectrum (defined in the right
plot) as a function of a fraction of the first-band conductance with
respect to the total conductance through the boundary.

turns negative, the BCS peak smears, and the amplitudes
of the proximity-induced features decrease. Also, the gap in
the spectrum corresponding to vanishing of DoS, Gs , rapidly
decreases as coupling becomes more symmetric. This is seen
more clearly in the upper left plot where the order parameter
and spectral gap are plotted as function of a fraction of the
first-band conductance with respect to the total conductance,
f = RB/RB1. Both parameters have quite sharp cusplike
dependence on f and the spectral gap practically vanishes
in the minimum. Note that, in contrast to the BCS DoS, the
spectral gap is significantly smaller than the order parameter.

In the next section we consider behavior of the order
parameter for the TRSB state.

VII. TRSB STATE

For illustration we consider here only the simplest TRSB
state, in the case the two-gap superconductor has identical
bands, coupled symmetrically to the s-wave layer (see the
panel at the right upper corner of Fig. 1). The symmetry
simplifies the calculations considerably. This is also the case
which favors the TRSB state most, since the frustration at the
interface is the strongest possible.

Due to the symmetry of the problem we can choose
�s(0) to be real. In this case �∗

1 = �2 and we can write
�1 = iω tan θeiϕ , �2 = −iω tan θe−iϕ . However, to preserve
the uniformity in notation we keep the (now redundant) α

indexing; ϕ1 = −ϕ2 = ϕ, θ1 = −θ2 = θ . The above implies,
of course, that we can write the gap functions as �1 = �eiχ ,
�2 = −�e−iχ . ϕ and χ parametrize the deviation from the
s± state and we expect that in the bulk ϕ→0 and �1, �2

become purely imaginary. From the boundary conditions it is
clear that �s can be chosen real everywhere [both Im(�s(0)]=
Im[�′

s(0)] = 0—no imaginary component develops). In the
θ parametrization the s-wave Green’s function is again
determined by Eq. (22). The equations for the s± side are
identical to Eqs. (25b), but there are now only two independent
variables (instead of four). In this case, the boundary conditions
(V) can be simplified as

θ ′
α = 1

γBα

(sin θs cos θα sin ϕα + cos θs sin θα),

ϕ′
α = 1

γBα

sin θs csc θα cos ϕα,

θ ′
s = − 2

γαγBα

cos θs sin θα (tan θs cot θα + sin ϕα) .

We proceed to solve the equations numerically. In Fig. 10
we show the results of calculation for �, χ (we again remind
the reader that �2 = −�1, χ2 = −χ1), and �s done for
different values of γBα . Several things should be noted. First,
χ (x) is positive and thus the s± gaps are pushed away from �s ,
in accordance with the argument in Sec. III. Second, several ξα

away from the boundary, χ becomes very small and the order
parameter returns to its s± bulk form (since the TRSB state
exists because the frustration created by the boundary). Third,
decreasing γBα (increasing the boundary transparency) tends to
reduce both �α(0) and �s(0), and increase χ (0), as expected.
It is important to note that decreasing γBα pushes �s(x) down
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FIG. 10. (Color online) Behavior of the order parameters in the
symmetric TRSB state for three different boundary transparency
parameters γBα and for γα = 5. The rest of the parameters are given
in the text. The bottom plots show the coordinate dependencies of the
absolute values of the order parameters and top plot shows the phase
χ (x) of the s± order parameter. χ goes to zero in the bulk, where the
state is s±, with phase rotated by π/2 with respect to the s-wave order
parameter. Note that |�1(0)| and �s decrease and the value of χ (0)
increases with the increase of the interface transparency.

everywhere, while keeping its general shape intact [unlike the
changes of �α(x)]. This is due to the relative thinness of the
s-wave layer.

Since controlling the interface parameters γBα is not
easy experimentally, we also study evolution with increasing
thickness of the s-wave superconductor, ds , for the same
parameters of the interface. We vary the thickness of the s-wave
layer from ξ ∗

s to 4ξ ∗
s and show the results of the calculation

on Fig. 11. On the s± side the changes are modest; χ shifts a
bit, while �α is virtually unchanged for different ds . Note that
as ds decreases, the gap on the right side gets slightly closer
to the bulk s± state (χ goes down). The changes on the other
side are more pronounced. �s is always suppressed as x → 0,
but, as in the previous case, �s is significantly below its bulk
value everywhere.

These results are summarized in the upper inset of Fig. 11
where we plot the value of the gap on the external left boundary
as a function of the s-wave layer thickness. We see the result of
the negative proximity effect as a suppression of �s(−ds) for
thinner films. With the increase of the film thickness �s(−ds)
goes up, however, it stays noticeably below its bulk value even
for ds = 4ξ ∗

s .
We can see that accurate numerical computations confirm

the structure of the TRSB state expected from general
considerations. In particular, in the TRSB state the negative
proximity effect is present and, depending on the precise values
of various physical parameters, can be quite pronounced.

FIG. 11. (Color online) �(x), χ (x), and �s(x) for γα = 5,γBα =
0.75 and four different values of ds . The changes on the right side are
generally quite small. In contrast, �s(x) is suppressed noticeably for
thin films. This is more clearly seen in the bottom inset, which shows
the magnified plots of �s(x). The top inset shows the ds dependence
of the �s at the outer surface.

VIII. DISCUSSION AND CONCLUSIONS

One important point should be addressed before we apply
our conclusions to structures involving iron-based supercon-
ductors. These materials have quite short coherence length and
are likely in the clean limit. In conventional superconductors
there is smooth interpolation between the clean and the dirty
limit and results obtained by solving the Usadel equations
are expected to be qualitatively or even quantitatively correct
in the clean limit.61 Furthermore, the boundary itself acts as
a scatterer and can push the region up to several ξ away in
the dirty regime. This again justifies the use of the Usadel
equations. In s± superconductors the situation is much less
clear; because of the unconventional nature of the order
parameter interband impurity scattering is pair-breaking. If
strong, it can completely destabilize the s± state.62 However,
if this scattering channel can be neglected, as we have done
(so s± is stable even close to the interface), then our approach
should provide a reasonably good description. Whether this
can be justified in realistic experimental situations is unclear,
at least at the moment.

In conclusion, we have studied the proximity effects close
to a boundary between s and s± superconductors. Based on
frustrated Josephson junction model, we have suggested phase
diagram for such system. Because of the frustration, present
at such interface, several interesting phenomena are possible.
In the case of maximum frustration—when the coupling of
the two gaps on the s± side with the s-wave superconductor
is comparable—a state which breaks time-reversal symmetry
appears. Such a superconducting state is also characterized
by a negative proximity effect, because of the frustration the
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gap amplitudes on both sides are suppressed. In the case
of significant asymmetry in the inter-boundary coupling the
aligned s± can be stabilized even close to the interface.
Interestingly, such an aligned state may also lead to negative
proximity effect. It is very important to note that this effect
is unique to the s-s± structures and is not present close to a
conventional s-s++ boundary. Observation of such an effect in
structures with iron pnictides/chalcogenides will be a definitive
proof that their order parameter belongs to the unconventional
s± class. Another unique fingerprint of this order parameter is
that it induces a negative feature in the s-wave DoS.
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APPENDIX A: BOUNDARY-INDUCED CORRECTIONS IN
THE WEAK-COUPLING LIMIT FOR

THE ALIGNED STATE

In this Appendix we consider weak-coupling case γBα �
1 and derive corrections to the Green’s functions and gap
parameter for aligned state in the linear order with respect to
the coupling parameters 1/γBα .

1. s-wave superconductor

The first-order corrections to the s-wave Green’s functions
�̃s and gap �̃s obey the following equations:

ξ 2
s,ω�̃′′

s − �̃s = −�̃s, (A1a)

λs2πT
∑
ω>0

ω2�̃s(
ω2 + �2

s

)3/2 = �̃s, (A1b)

with ξ 2
s,ω = Ds/(2

√
ω2 + �2

s ) = ξ 2
s,�(�s/

√
ω2 + �2

s ) and
ξ 2
s,� = Ds/ (2�s). In the boundary condition we can neglect

the difference between �’s and �’s and approximate �’s by
their bulk values. This gives

ξ ∗
s Gs�̃

′
s = −

∑
α

Gα

γ̃Bα

(�s − �α) (A2)

at x = 0 with γ̃Bα ≡ γαγBα . The self-consistency condition
also can be rewritten as

2πT
∑
ω>0

[
ω2�̃s(

ω2 + �2
s

)3/2 − �̃s

ω

]
+ �̃s ln

T s
c

T
= 0. (A3)

We split �̃s into the two contributions, �̃s = �̃s,b + �̃s,�,
where �̃s,b is induced by the boundary condition and �̃s,�

is induced by the gap correction. The first contribution �̃s,b

can be found from the following equation and the boundary
condition

ξ 2
s,ω�̃′′

s,b − �̃s,b = 0, (A4a)

ξ ∗
s Gs�

′
s,b = −

∑
α

Gα

γ̃Bα

(�s − �α), (A4b)

while the second contribution �̃s,� obeys the following
equation and the boundary condition

ξ 2
s,ω�̃′′

s,� − �̃s,� = −�̃s, (A5a)

ξ ∗
s Gs�

′
s,� = 0. (A5b)

The solution �̃s,b(x) of the linear equation (A4a) with the
boundary condition �̃′

s,b = 0 at x = −ds is given by

�̃s,b(x) = Cs,b cosh

(
x + ds

ξs,ω

)
, (A6)

where the constant Cs,b can be found from the boundary
condition at x = 0,

Cs,b = − ξs,ω/ξ ∗
s

sinh(ds/ξs,ω)

∑
α

Gα

γ̃BαGs

(�s − �α).

We compute �̃s,� and �̃s using the Fourier expansion, �̃s,� =∑∞
m=0 �̃s,�,m cos kmx, �̃s = ∑∞

m=0 �̃s,m cos kmx, with km =
mπ/ds . For �̃s,b(x) [Eq. (A6)], the Fourier components �̃s,b,m

can be computed explicitly:

�̃s,b,m = − (2−δm)ξ 2
s,ω

/
(dsξ

∗
s )

1 + ξ 2
s,ωk2

m

∑
α

√
ω2+�2

s√
ω2+�2

α

�s −�α

γ̃Bα

.

(A7)

Equation (A5a) immediately gives the following relation
between the Fourier components �̃s,�,m and �̃s,m:

�̃s,�,m = �̃s,m

1 + ξ 2
s,ωk2

m

. (A8)

Substituting this result into the self-consistency condition
(A1b), we express �̃s,m via �̃s,b,m

�̃s,m =
⎧⎨
⎩2πT

∑
ω>0

�2
s + ω2 ξ 2

s,ωk2
m

1+ξ 2
s,ωk2

m(
ω2 + �2

s

)3/2

⎫⎬
⎭

−1

× 2πT
∑
ω>0

ω2�̃s,b,m(
ω2 + �2

s

)3/2 . (A9)

Equations (A7)–(A9) provide a complete solution of the
problem.

For convenient comparison with the numerical calcula-
tions, we also present these results in the reduced form
in which ds is measured in units of ξ ∗

s = Ds/(2πTc)
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and energies (ω, �’s and �’s) in units of πTc:

�̃s,m =
{

2t
∑
ω>0

1(
ω2 + �2

s

)3/2

[
�2

s + ω2 (πm/ds)2√
ω2 + �2

s + (πm/ds)2

]}−1

×2t
∑

α,ω>0

ω2(
ω2 + �2

s

)√
ω2 + �2

α

(2 − δm)/ds√
ω2 + �2

s + (πm/ds)2

�α − �s

γ̃Bα

, (A10)

�̃s,m = 1

1 + (πm/ds)2 /
√

ω2 + �2
s

(
�̃s,m + 2 − δm

ds

∑
α

1√
ω2 + �2

α

�α − �s

γ̃Bα

)
, (A11)

with t = T/Tc and ω = 2t(n + 1/2). At low temperatures
the summation with respect to the Matsubara frequen-
cies can be replaced by the integration 2πT

∑
ω>0 →∫∞

0 dω. In this limit we can obtain an analytical result
for the average correction to the order parameter, �̃s,0,

�̃s,0

πTc

= ξ ∗
s

ds

∑
α

U (�s/|�α|)�α − �s

γ̃Bα|�α| ,

with U (a) =
∫ ∞

0
dz

z2(
z2 + 1

)3/2 √
a2z2 + 1

= K(1 − a2) − E(1 − a2)

1 − a2
, (A12)

where K(m) = ∫ π/2
0 (1 − m sin2 θ )−1/2dθ and E(m) =∫ π/2

0 (1 − m sin2 θ )1/2dθ are the complete elliptic integrals.
We present also the simple analytical results for important

particular case of (i) thin s layer, ds � ξs,�; (ii) weaker s

superconductor, �s � |�α|; and (iii) low temperatures, T �
T s

c . Due to the first condition, the dominating contribution to
the gap correction is given by the coordinate independent part
�̃s,0, which is determined by the general formula (A12). In the
limit of �s � |�α| we can use the asymptotics of the function
U (a) in the limit a � 1, U (a) ≈ ln (4/a) − 1 leading to the
following simple result:

�̃s,0

πTc

≈ ξ ∗
s

ds

∑
α

�α − �s

γ̃Bα|�α|
[

ln

(
4|�α|
�s

)
− 1

]
. (A13)

The sign of �̃s,0 determines net effect of the s± superconductor
on the s superconductor (positive vs negative proximity).
As one can expect, the gaps aligned with �s enhance
superconductivity and the gaps antialigned with �s sup-
press superconductivity in the s superconductor. The relative
contributions are mostly determined by the electrical coupling
between s superconductor and the s± bands.

Weak spatial dependence of �̃s is determined by the
components �̃s,m with m > 0. At T = 0 these components
can be presented as

�̃s,m = − 1

Wm

2ξ 2
s,�

dsξs

∑
α

Jα,m

�s − �α

γ̃Bα

, (A14)

with

Wm =
∫ ∞

0

dz

(z2 + 1)3/2

[
1 + β2

mz2√
z2 + �2

s + β2
m

]
,

Jα,m =
∫ ∞

0
dz

z2

(z2 + 1)
√

z2 + (�α/�s)2

1√
z2 + 1 + βm

,

and βm = (πmξs,�/ds)2. The first integral can be actually
evaluated in the general case,

Wm = 1

βm

[
π

2
+
√

β2
m − 1 ln

(√
β2

m − 1 + βm

)]
,

and it has asymptotics Wm ≈ ln 2βm for βm � 1. In the limits
|�α| � �s and �sβm � |�α| the second integral can be
evaluated as

Jα,m ≈
∫ ∞

0
dz

1√
z2 + (�α/�s)2

1

z + βm

≈ 1

βm

ln
2�sβm

|�α| .

Collecting terms, we obtain

�̃s,m ≈ −
∑

α

[
1 + ln (�s/|�α|)

ln[2(πmξs,�/ds)2]

]
2ds/ξ

∗
s

(πm)2

�s − �α

γ̃Bα

.

(A15)

Using relation (|x| − 1)2 = 1
3 + 4

∑∞
m=1

cos(πmx)
(πm)2 , we can

approximately present the gap correction in real space as

�̃s(x) ≈ �̃s,0 − ds

ξ ∗
s

∑
α

�s − �α

γ̃Bα

[
(x + ds)2

2d2
s

− 1

6

]

×
[

1 + ln (�s/|�α|)
2 ln(π

√
2ξs,�/ds)

]
. (A16)

Correspondingly, for the Green’s function for the same limits
we derive

�̃s(ω,x) ≈ �̃s,0 − πTc

ξ ∗
s

ds

∑
α

1√
ω2 + �2

α

�s − �α

γ̃Bα

×
[

1 + 1

2

(
x + ds

ξs,ω

)2 ]
. (A17)
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Typically, the spatial dependence of the order parameter
is correlated with the sign of proximity: �̃s(x) increases
towards the boundary for positive proximity and vice versa.
Analyzing Eq. (A16), however, we can conclude that this is
not always the case. Indeed, the quadratic term changes sign
roughly when (�1 − �s) /γ̃B1 − (�s + |�2|)γ̃B2 = 0. At this
point �̃s,0 ∝ ln (C�1/�s) /�1 − ln (C|�2|/�s) /|�2| and it
is negative for �1 > |�2|, meaning that in some narrow range
of parameters �̃s(x) will increase towards the boundary in
spite of negative proximity effect.

2. s±-wave superconductor

We can evaluate corrections to the s± gap parameter and
Green’s functions following the same general route. The first-
order correction to �α with respect to the coupling strength
γ −1

Bα is determined by the following equation and boundary
conditions:

Dα

2ω
Gα�̃′′

α − �̃α = −�̃α, (A18)

ξαGα�′
α = Gs

γBα

(�s − �α), at x = 0, (A19)

with Gα ≈ ω/
√

ω2 + �2
α and �′

α = 0 at x = −d±. The self-
consistency condition for the linear correction,

2πT
∑

β, ω>0

λαβ

Gβ�̃β

ω
= �̃α, (A20)

can be rewritten as

2πT
∑
ω>0

[
�̃β√

ω2 + �2
β

− �̃β

ω

]
+ ln

1

t
�̃β

=
∑

α

(
λ−1

βα − λ−1δβα

)
�̃α, (A21)

where λ is the largest eigenvalue of the matrix λαβ .
Similar to the s-wave case, we can split �̃α into the

contributions induced by the boundary condition and by
the correction to the gap parameter, �̃α = �̃α,b + �̃α,�. The
equation and the boundary condition for �̃α,b are

ξ 2
α,ω�̃′′

α,b − �̃α,b = 0, (A22)

ξαGα�̃′
α,b = − Gs

γBα

(�s − �α), (A23)

with ξ 2
α,ω ≡ Dα/(2

√
ω2 + �2

α) = ξ 2
α,�|�α|/√ω2 + �2

α and
ξ 2
α,� ≡ Dα/(2|�α|). The solution for �̃α,b(x) is given by

�̃α,b(x) = ξα,ω

ξα

Gs

γBαGα

(�s − �α)
cosh[(x − d±)/ξα,ω]

sinh(d±/ξs,ω)
.

(A24)

The component �̃α,� has to be found from the following
equations:

ξ 2
α,ω�̃′′

α,� − �̃α,� = −�̃α, (A25)

ξαGα�′
α,� = 0. (A26)

We can again find �̃α,�(x) and �̃α(x) using Fourier transform

�̃α,� =
∑
m

�̃α,�,m cos qmx, �̃α =
∑
m

�̃α,m cos qmx,

with qm = mπ/d±. From Eq. (A25) we immediately find

�̃α,�,m = �̃α,m

1 + ξ 2
α,ωq2

m

. (A27)

Substituting �̃α,� into the gap equation, we obtain relation
connecting �̃α,m with �̃β,b,m, Fourier components of �̃β,b(x),

�̃α,m = 2πT
∑

β,ω>0

Um,αβ

ω2�̃β,b,m(
ω2 + �2

β

)3/2 ,

Um,αβ = [
λ−1

αβ − (λ−1 + �m,α)δαβ

]−1
,

�m,α = 2πT
∑
ω>0

[
ω2(

ω2+�2
α

)3/2

1

1+ξ 2
α,ωq2

m

− 1

ω

]
+ ln

1

t
.

(A28)

Fourier transformation of the result in Eq. (A24) gives

�̃s,b,m = (2 − δm) ξ 2
α,ω

/
(d±ξα)

1 + ξ 2
α,ωq2

m

√
ω2 + �2

α√
ω2 + �2

s

�s − �α

γBα

.

(A29)

It is convenient to introduce the degenerate matrix, wαβ =
λ−1

αβ − λ−1δαβ , w11w22 − w12w21 = 0. Explicitly, the elements
of this matrix are given by

w11 =
√

λ2−/4 + λ12λ21 − λ−/2

det λ
, w12 = − λ12

det λ
,

w22 =
√

λ2−/4 + λ12λ21 + λ−/2

det λ
,

with λ− ≡ λ11 − λ22 and det λ ≡ λ11λ22 − λ12λ21. The matrix
Um,αβ = [wαβ − �m,αδαβ]−1 can be presented as

Ûm = 1

DU

[
w22−�m,2 −w12

−w21 w11−�m,1

]
,

(A30)
DU = −�m,2w11−�m,1w22 + �m,1�m,2.

Equations (A27)–(A29) provide full formal solution of the
problem.

For convenient comparison with numerical calculations, we
present the above results in the reduced form:

�̃α,b,m = (2 − δm) (ξα/d±)
√

ω2 + �2
α[√

ω2 + �2
α + (

mπξα

d±

)2]√
ω2 + �2

s

�s − �α

γBα

,

�̃α,�,m =
√

ω2 + �2
α√

ω2 + �2
α + (mπξα/d±)2

�̃α,m,

�̃α,m = 2t
∑

β,ω>0

Um,αβ

ω2(
ω2 + �2

β

)√
ω2 + �2

s

× 2ξβ/d±√
ω2 + �2

β + (mπξβ/d±)2

�s − �β

γBβ

.
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APPENDIX B: BOUNDARY CONDITIONS
IN θ PARAMETRIZATION

In this Appendix we derive the boundary conditions (BCs)
in θ parametrization, appropriate for the different SC states
we consider. We start with the multiband generalization of the
Kupriyanov-Lukichev BCs:

ξ ∗
s G2

s�
′
s =

∑
α

ξα

γα

G2
α�′

α, (B1a)

ξαGα�′
α = − 1

γBα

Gs(�s − �α). (B1b)

In the aligned case all �’s can be chosen real. Thus, we have

�α = ω tan θα, �s = ω tan θs, Gα = cos θα, Gs = cos θs,

where θ ’s are also real. With those the BC at the interface for
the aligned state simplify to

ξ ∗
s θ ′

s =
∑

α

θ ′
α

γα

, (B2)

ξαθ ′
α = 1

γBα

sin(θα − θs). (B3)

This corresponds to equations in the reduced units presented
in the text.

For the TRSB state the functions �{s,α} are complex and
we select the following parametrization �s = ω tan θse

iϕs and
�α = iω tan θαeiϕα . Taking derivatives

�′
s = ω

(
θ ′
s

cos2 θs

+ iϕ′
s tan θs

)
eiϕs ,

�′
α = iω

(
θ ′
α

cos2 θα

+ iϕ′
α tan θα

)
eiϕα ,

substituting them in Eqs. (B1) and separating real and
imaginary parts, we obtain the boundary conditions for the
general complex case,

ξαθ ′
α =− 1

γBα

[cos θα sin θs sin(ϕs − ϕα) − cos θs sin θα],

(B4a)

ξαϕ′
α sin θα = 1

γBα

sin θs cos (ϕs − ϕα) , (B4b)

ξ ∗
s θ ′

s =−
∑

α

1

γ̃Bα

[cos θα sin θs + cos θs sin θα sin(ϕα−ϕs)],

(B4c)

ξ ∗
s ϕ′

s sin θs =
∑

α

1

γ̃Bα

sin θα cos (ϕα − ϕs) . (B4d)
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